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ABSTRACT

Consider the Dvoretzky random covering with length sequence {a/n},>1
(a > 0). We are interested in the set F3 of points on the circle which are
covered by a number 3logn of the first n randomly placed intervals. It
is proved among others that for a certain interval of 8 > 0, the Hausdorff
dimension of Fj is equal to 1 — [3log(8/a) — (8 — a)]. This implies that
points on the circle are differently covered.

1. Introduction

We consider the circle T = R/Z which is identified with the interval [0,1), a
decreasing sequence {{,}n>1 (0 < €, < 1) such that 3, €, = oo and an iid.
random sequence {wy},>1 of the uniform distribution (Lebesgue distribution).
We denote by I, (or more precisely I,,(w)) the open interval of length ¢,,, with left
end point w,. The Dvoretzky covering problem is to give necessary conditions
and sufficient conditions on the length sequence (£,) in order to cover the whole
circle T almost surely (a.s. for short), or equivalently to have

P(T=§11n> -1
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158 A. H. FAN Isr. J. Math.

where P is the probability measure of the underlying probability space (€2, A, P).

The problem was raised in 1956 by A. Dvoretzky [D]. It attracted the attention
of P. Lévy, J. P. Kahane, P. Erdés and P. Billard who made significant contribu-
tions (see [K1]). In 1972, L. Shepp [S1] gave a complete solution to the problem
by finding a necessary and sufficient condition

o= 1
Z—xp (b1 + -+ £,) = .
—n?

To get more information on further developments of the subject, we refer to
J. P. Kahane’s book [K1] and his nice survey papers [K4, K5].

From the Shepp condition, we see that when the whole circle is covered, every
point on the circle is covered by an infinite number of intervals. L. Carleson then
asked the question: How many intervals cover one point? (personal communica-
tion to J. P. Kahane). This question was partially answered in [FK1] in the case
£, = afn with a > 1: Let

N.(t)=Card{l1 <j<n:I, >t}

There are two constants A,, B, depending on o with 0 < 4, < a < By <
such that almost surely for every ¢t € T, we have

——Nn(t) < lim sup ——Nn(t) <B

— Q-

Ay < liminf <
n—0o ogn n—00 ogn
A nearly trivial result (see also [FK1] for explanation) is that almost surely for
almost every t € T (with respect to Lebesgue measure), we have
Na(t)

lim =a
n—oo logn

Having this information, we would like to raise some natural questions. We
take a positive number 8 which may be different from o and we consider the

Fy={teT: lim Nalt) = 8}.

n—0co log n

(random) set

Is the set F3 non-empty for some 3 # a? How big is the set F;3? How rich is the
set of 8’s such that Fj is non-empty? We say that points in Fg are 3-regularly
covered. We say that t € T is irregularly covered if

i
lnrggo}f logn n—mop logn
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Are there irregularly covered points? How many are there?
In this paper we partially answer these questions by showing the following two
theorems. We will use dim F to denote the Hausdorff dimension of a set E.

THEOREM 1: Let £, = a/n with a > 0.
(a) If B € (a — Va,a + /a)[)(0,00), we have almost surely

_ 2
&m&Zl—E%§L>&

(b} If Blog(B/a) — (8 — a) < 1, we have almost surely
dim F3 <1 —[Blog(B/a) — (8 — &)].

(c) If max(a — 1,0) < 8 < @, we have almost surely

dim Fy = 1 - [3log(8/a) — (8 — a)].

We remark that the statement in part (b) of Theorem 1 holds for the packing
dimension of Fg, which is what we actually prove. As a consequence, in part (c)
of Theorem 1, the Hausdorff dimension can be replaced by the packing dimension.

THEOREM 2: Let ¢, = a/n with a > 0. Almost surely, the set of irregularly
covered points is of Hausdorff dimension 1.

One of the main ideas is to consider the following formally defined random
measure (weak* limit)

0 21(0,6,) (t—wn)
Q(dt) = [] St (with a = B/a)

hetett Sl CER D120
and to show that the measure Q)¢ is supported by F. Such a measure is called a
multiplicative chaos. We are then led to estimate the dimension of the measure
Q°. It is more practical for us to work with a variant of @Q%, called a Poisson
multiplicative chaos, that we denote by P%. We say that P?® is a variant because
P? is a.s. equivalent to Q¢ (Theorem 4). Therefore dim Q* = dim P* a.s. On
the other hand, we calculate directly dim P® (Theorem 3).

In §2, we introduce the notions of multiplicative chaos and dimension of mea-
sure. Theorem 1 (a)-(b) and Theorem 2 are respectively proved in §3 and §4.
The more difficult part is Theorem 1 (c¢) whose proof occupies the rest of the
paper.

We point out that a study on dyadic random covering is carried out in [FK2].
The results obtained there are more complete.
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2. Tools

We need two tools. The first one is the infinite product of processes studied in
a general setting by J. P. Kahane [K2]. We briefly present it here for the case
adapted to our purpose. The key part for us is the Peyriére probability measure.
Let (f,) be a sequence of non-negative Borel functions on T whose integrals with
respect to Lebesgue measure are all equal to 1. Consider the (random) measures

n
(@)dt =[] fi(t — wy)dt
j=1
It was proved that a.s. the sequence of measures Qn(t)dt converges weakly to a
(random) measure, called a multiplicative chaos, which we denote by . The
partial product sequence Q),,(t) is called an indexed martingale, because it is
a martingale for each t. If

//j_fIlEfj(t —w;)fi(s — wj)dtds = //jli[lfj x f(t — 5)dtds

is bounded as n — oo (where f(t) = f(—t)), the martingale fo Qr(t)dt converges
in L? and the measure @ does not vanish and a probability measure Q on 2 x T,
called the Peyriére measure, can be defined by the relation

/ (w0, )dQ(w 1) = E / (w0, 1)dQ(t)
QxT

(for all bounded measurable functions ¢). A very useful fact is that X, =
t —wy (n > 1), considered as random variables on Q x T, are Q-independent.
Furthermore, we have the formula

Egh{t —wp) = /Th(u)fn(u)du

(for any positive or bounded Borel function h).
The second tool is the following principle for estimating the dimension of a set
[F2]. The energy integral of order 7 (0 < 7 < 1) of a measure g on T or R is

defined by
du(t) du(s)
// [t—s|7

The (lower) dimension of a measure p, denoted by dim g, is the supremum of
B’s such that p(E) = 0 for any E with dimE < 3 [F2]. So, for a given set F,
we have dim F > dim g if u(F) > 0. To estimate the dimension of a measure, we
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shall use the fact that dim g > 7 if I* < oo [F2]. In general, we have the formula
[F2]

, oo log u(Br(x))
= >0: _— > -a.e.
dim g = sup {'y >0 ll;rtl:élf log " >y p-a.e }
where B,(z) denotes the interval centered at x of length 2r. There is also a

notion of upper dimension, but it is not needed here.

Notation: For a sequence of real numbers a,, and a sequence of positive numbers
by, an = O{b;) means |a,| < Cb, for some constant C > 0; a, = b, means
a, = O(by) and b, = O(ay); an ~ b, means a, /b, — 1.

3. Proofs of Theorem 1 (a) and (b)

Proof of Theorem 1 (a): For a > 0, consider the random measure Q* defined
by the indexed martingale

where x; is the characteristic function of the interval (0, /j). Take a such that
a(l — a)? < 1. The corresponding indexed martingale is a L? martingale and
then gives rise to a non-vanishing random measure Q® [FK1]. That Q° does not
vanish is a tail event because the j-th factor in Q2%(t) is bounded from below by
¢; and from above by C; where the two constants ¢; > 0 and C; > 0 can be

chosen to be
min(a, 1) max{a, 1)

T 1+ (a-1)g 1+ (a—1)¢;"

So, a.s. we have Q% # 0. Let Q% be the associated Peyritre measure. We
claim that, for any n > 1/2, Q%almost surely (then almost surely Q%-almost
everywhere)

€j

C; =

(3.1) ixj(t—wj) =aalogn + O(log"n) (n — o0).
i=1

We postpone the proof of (3.1). It follows from (3.1) that almost surely
Q*(Fge) =0.
That means Fy,, is of full @*-measure. Thus we have almost surely

dim F,, > dim Q°.
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On the other hand, consider the energy integral of @* of order 7:
IQa / / dQ* (t dQ°(s
|t —s|”

By the calculation in [FK1], it may be proved that ]EI,Q'1 < oo if

// dt ds <
|t — s|ela=1)? '

The finiteness of the last integral is guaranteed by a(a — 1)? + 7 < 1, in other
words, 7 < 1 — a(a — 1)%. Then, under this condition on 7, I” is almost surely
finite. This implies that

dimQ* > 1 — ala —1)%

To obtain the claim in Theorem 1 (a), it suffices to take a = 8/a for a given .
We now prove (3.1). Consider

n
Sn :ZYJ" Vj = Xj - Ega X;

where X; = x;(t —w;) (j > 1) are Q-independent variables (see §2). We first
estimate the variance of S,,. Notice that

aNi (t_‘*}j)

Eoe X; =Ex; (t = wi) 1o =175

ac/j 1
Trea—i -7 (j_?)'

Since X; takes just two values 0 and 1, we have Eg« X5 = Ega X;. Hence
. ao 1
Eqe¥} =EqeX;(1 ~Eqe X)) = =% +0(j—2).
Then
(3.2) Eg« 52 = O(logn).

Next, by the Kolmogorov inequality and (3.2),

N Eg.S% . (logN
Q*(,max |Su| 2 ) < =53 #0( )
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holds for any N > 1 and any A > 0. Apply this inequality to N = [exp k2]
and A = k7 with A = 2/(2n — 1), where [z] denotes the integral part of a real
number x. We get

k2 1
a nAy - -
(| max , [Sal 2 K%)= O(k?nA) O(k?)'
According to the Borel-Cantelli lemma, Q*-almost surely (then almost surely

Q*-almost everywhere)

B — ,UA.
(3.3) L |Sn| = O(K")

Suppose exp(k — 1)® < n < expk®. We have (k — 1)® < logn. So, by (3.3),
1S.] = O(k"2) = O(log" n).
Thus (3.1) is proved for 3°7_, Ega X; = aalogn + O(1). [ |

Proof of Theorem 1 (b): Fix a dyadic interval I = [-5, 53] (0 < ¢ < 29) of
length 277. Let

aJ
Si(t) = xalt — wp).
k=1

Then let

X = rtnei}lsj(t), Y = I?éa,;(Sj(t).

We will distinguish two cases: 8 > a and 8 < a. To deal with the first (resp.
second) case, we will work with ¥7 (resp. X;). Suppose 8 > «a. For any small
6 >0, let

Ci=A{I:|I|=277,Y; > (B - 6)jlog2},
M] = Carde = Zl{}'12(6—6)j10g2}ﬂ
I
Gi=Jr
Tec;
It is clear that

FBC UﬂGJ

/=1 j:ﬂ
It follows that

o0 o0
dimp F < supdimp ﬂ G; <supdimp ﬂ G
82 j=¢ fZl j=¢t
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where dimp denotes the Packing dimension and dimp denotes the upper box
dimension (see [Mat] for their definitions). However, C; is a 277-cover of (;2, G;
when j > £. So we have

pag log M,

g . . 7
dimp ﬂ G; < jll)r{.lo g
j=¢
Then we are led to estimate the random variable M;. Take an o* such that

0 <a<a* <-4 We consider a covering with enlarged random intervals.

Denote _
27
S;e) = xh(t—w)
k=1
where xj is the characteristic function of the interval with the same center as

(0, a/k) but of length a*/k. Let I~ (resp. I*) be the left (resp. right) dyadic
interval of length 277 next to I. Consider the random set

Er={ter | JI|JI*: 5@t > vi}.

Suppose Y; = Sj(tp) = N. That means there is a (random) point to in the
interval I which is covered exactly N times. If the interval I covers tg, the
corresponding enlarged interval must cover the interval centered at ¢y of length
(a* — a)/k. Tt follows that every point in the interval (¢ — "‘;—,;ﬁ, to + 9‘2—;%) is
covered by at least NV enlarged intervals. So we have

o —«
|Er| > 57

By the definition of E, we have for A > 0

A E| < / Mgt < / St
Er —yryrt

Then, by taking expectation, we get

BN <|I- | JI|JITIE

REHT)
|Ef|

9J

Sa*?’_akl;ll (1+ G 1)%*)'

Consequently, by using the Markov inequality, we get
_ AY;
P(Yr > (8- 4)jlog2) Sm

<3exp((e’\ —1a”) 9=ih(N)
- a* —a
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where
R(A) = (B =8I —a*(e* —1).
)

We remark that the function h(A) is maximized at A = log -’ix; > 0 and its
maximal value is equal to
e = (5 = ) 1og 222 — (8- 5~ a*)
Thus we get
EM; =Y P(Y; > (8 - 0)j BP0 (1= hman)
i= . 12 (8- )JIng)Sm—'Q .

Consequently, for any > 0,
Ez 2~j(1_hmax+n)Mj < 00.
J
Then almost surely for any ¢ > 1, we have

log M;
dlmBﬂG <hm5uPlg2]§1_hmax+n-
=t j—ooo 108

Let successively o* = «, 6 — 0, 7 — 0. We get
dimp Fg < 1—[Blog(8/a) — (8 — a)].

Suppose now § < «. The proof is almost the same. Let us just point out the
minor differences we should make. For any small § > 0, let

Cj=A{I:|I|=277,X; <(B+6)jlog2},

Mj = CardC; = Y 1(x,<(s+8) g2}
i

(“>" is replaced by “<” and “—4" is replaced by “+4§”).
In order to estimate the random variable M;, we take an a** such that
0 < B+4+46 < ™ < a and consider a covering with shortened random inter-

vals. Let
Sir(t Z Xt — wg)

where }* is the characteristic functlon of the interval with the same center as
(0, a/k) but of length a**/k. It may be proved that for any A > 0 we have

J
2 *ok

Q —3a** H (1 + (e"\ B 1)O[Ic )

k=1
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Consequently, by using the Markov inequality, we get

—-AY;
P(Xr < (B+6)jlog2) < S5
<3exp((e™ — 1)a™) . 9=3h(})
- a — a**
where
hA) = —(B+ A —a** (e = 1).
The function h(}\) is maximized at A = log }3% > 0. |

4. Proof of Theorem 2

Take a sequence a = (an)n>1 of positive numbers such that 6 = sup;>; |a; — 1

< o0. Note that we have ,

a
> <
n
n
Consider the random measure %, which is a variant of the measure used above,

defined by the indexed martingale

n i (t—w;j)

Q)= ]1;[1 1 +é(aj /5

If ad? < 1, the corresponding indexed martingale also gives rise to an almost
surely non-vanish random measure Q%. Denote again by Q¢ the associated
Peyriere measure. In the same way as we prove (3.1), for any n > 1/2 we
can prove that almost surely Q%-almost everywhere

Zx](t—w] —az + O(log"n) (n — o).

Take now 0 < 6 < 1, a number sufficiently small such that aé? < 1, and a rapidly
increasing sequence of integers (7;) such that

Y1+t = 0(vks1) (B — 00).

Next let (ny)x>0 be the sequence of integers defined by

No+ny+---+ng
no+n1+'--+nk+1‘

np = 1, 2—’7&-(»1 —
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Then define a sequence (a,) as follows:

an=1—6 ifng+---+ng<n<ng+--++ ngkt1,

an=1+0 ifng+---+nop_1<n<ng+--+ na.

For this choice of sequence (a,), we get

No+-+n2k
a; o+ -+
> 2L =(1+68)log ———————+0(m + - +721)-
= J ( ) gn0+"’+n2k—1 n )

It follows that

no+-+n
1 0 2k

lim Y144
koo log{ng + - -+ + ngg) =

Similarly, we have

1 no+-+nog—1 @
lim 2 =1-6.
k—oo log(ng + -+ + Nak_1) Z—; Jj

So we have that almost surely Q%-almost everywhere

N, (t , N, (t
lim inf () <(1-é6)a< {1+ d)a <limsup ()
noco logn n—oo logmn

167

The energy integral of Q@ of order 7 can be computed to be finite if ad? +71 < 1.

So the dimension of the irregularly covered points is bounded from below:

dimQ®* > 1-ad> =1 (§—0).

5. Proof of Theorem 1 (c), Poisson multiplicative chaos

The rest of the paper is devoted to the proof of Theorem 1 (c¢). In this section we
just present the strategy of the proof. Details will be given in the next sections.

As was seen in the proof of Theorem 1 (a), we have only to show that a.s.

dimQ* > 1 — [Blog(B/a) - (8 — a))

where a = 3/« (see the formula at the end of §2). Instead of Q%, we will work
with a Poisson multiplicative chaos P%, because its dimension is easier to calculate
(see the following Theorem 3). We will also prove the equivalence of Q% and P*
(see Theorem 4), which implies that Q* and P* have the same dimension [F2].

In this way, Theorem 1 (c) will be proved.
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Now let us give more details of the strategy.

Define first the Poisson multiplicative chaos P*. Let A = dx be the Lebesgue
measure on R and let x4 be a measure on Rt = (0, +00) which is assumed finite
on compact sets and concentrated on the interval (0,1). Consider the product
measure ¥ = A ® u on R X Rt and then the Poisson point process (X,,Y)
with intensity v. A corresponding Poisson covering problem was considered in
[Man,S2] and its relation with the Dvoretzky covering was revealed by Kahane
[K3]. For t € R, denote

Di={(z,y) ERxRT:y>0,t —y<z <t}
For a fixed positive number 0 < a < oo, construct an indexed martingale
PX(t) = aN‘(t)exp[(l —a)v(Dy)] (t€R, €>0)

where v, is the truncation of v defined by A® e with e = pljc o), the restriction
of p1 on [¢,00) and N,(t) is the number of points in the domain D; of the Poisson
process with intensity v.. By discretizing ¢ by a decreasing sequence {e,}, we
may write P2 as a product of independent variables P7 /P2 _ (e = oo so that
P2 (t) = 1). As in §2, we may define a multiplicative chaos which will be denoted
by P?, i.e., the weak* limit of P2 (t)1jo 1)(t)dt (see [K4] for more details).

Many properties of the Poisson process are revealed by the kernel

k(t) = ku(t) = expp(t)

where

o0 = [ =1t sduty

(z+ = max(0,z) denoting the positive part of z).
Although many calculations in the sequel are valuable for arbitrary measure
1, we will concentrate on the measure

o
u= Z 8¢, with £, = a/n.
n=1
For this special case of u, we have

k() =exp > (€n — [thy = 1/]t]°.

n=1
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THEOREM 3: Suppose max(a — 1,0) < 8 < a. If a = 3/a, then almost surely
dim P* > 1 — [Blog(f/a) — (B — a)].

The proof of this theorem is based on the following two propositions whose
proofs will be postponed until §§6-7. The first concerns the variation of N _ (¢).

PROPOSITION 1: We have almost surely

logn
sup Ne (t) — N (s)| =0 .
t,sE(O,l);|t—s[§€n| ¢ ( ) ) ( )I (IOglogn)

The second concerns the tail measure RZ of P%, where RS is by definition the
Poisson multiplicative chaos associated to the measure v{) = X @ pl(0,0,.)-

PROPOSITION 2: Suppose 0 < a < 1 and a(1 —a) < 1. There is an almost surely
finite variable 0 < C{w) < oo such that for any n > 1 and for any interval I of
length ¢,, in [0,1], we have

1
RA(D) < C() g .

Proof of Theorem 3: Let I (t) be the dyadic interval of the form [i27%, (i+1)27%)
containing ¢. Let n be the largest integer such that ¢, > 27%. Then £,,, < 2.
Let I;(t) be an interval of length ¢, which contains I(t). Since £, = a/n, we
have

|Ie| = |l = 27 % = 1/n, v, (Dy) = ij ~ alogn.
j=1
Then by Proposition 1 and Proposition 2, a.s. for any I;(t) we have
P{(Ii(t)) <P*(Ii(t))
= [ @ el e, (DR )
k(t

=0 (n®1 =0 mgtgm) g Nen () RE (T, (1))

log n 1
=0 (n*1-9%0gTszw) g Nen O I (£) log —— ).
then log P*(I,(t)) {t)
.. log P(Ie(t . N, (t
1 f————=>1- —a)— —_——
i gt 20— o) ~leeelimap 3T

Let Y; = N(D:N(Rx{¢;})). Let P* be the Peyriére measure, which is well defined
because (1 — a)? < a(l — a) < 1. The variables Yj(w,t) are P%-independent.
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We have Ny (D;) = Z;.lzl Y; and

Y ’ 2 _ pYiah 2
=al;, Ep.Y; —IEan =al; + (al;)”.

Ep.Y; = ]E

It follows that a.s. P%-a.e.

. Ne,(Dy)
m ——— = au
n=oo  logn

(see the proof of Theorem 1 (a)). Thus a.s. P*-a.e.

a
lim inf 128 P Uk())

>1-a(l—a)— .
it 0] >1—a(l —a)—acloga

By the formula at the end of §2, we have a.s.

dimP* >1-a(l —a)—acloga=1-(a—p3)—pBlog(B/a). W

Following the idea in [K3], instead of {¢,}, we consider another sequence {¢}
which is constructed from {¢,} as follows:

! ! .
gm m—1) == gm(m+1) = Am Wlth /\m = Em(m+1) .
—1——--2 +1 — 2

Evidently £, < ¢,. More important is

o0

Ze —£,)

It follows that if &¥'(-) denotes the kernel associated to {£,,}, k'(t) ~ k(t). It will
be easy to check that Propositions 1 and 2 and then Theorem 3 remain true if
¢, is replaced by ¢/,. Let @ be the multiplicative chaos associated to £,. We
have the following equivalence result whose proof will be postponed until §8.

PROPOSITION 3: Suppose | k(t)(1=2’dt < oo (that is a(1 — a)? < 1 when £, =
a/n). Then almost surely, Q* and Q'® are equivalent.

Now we compare Q'* with a Poisson multiplicative chaos. A Poisson process
with intensity v may be constructed as follows. Fix the segment J,, = [r,r +
1] x {€n} (r € Z,n > 1). Let N, , be a Poisson variable with mean value 1.
The Poisson process with intensity v|y,_, is the set of points {r + nr(‘?)L}lst Neon
where {nﬁjy)t }i>1 is an ii.d. sequence with uniform distribution on [0, 1], which is
independent of N, ,. The union of all such random sets, assumed independent,
is a Poisson process with intensity v.
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We assume that ¢, = ;. Recall that there is an i.i.d. sequence {w;} in
the Dvoretzky covering model. We use these variables to construct the Poisson

process. Let
m(m+1)/2

Nm = Z NO,n

n=m(m—1)/2+1

which is a Poisson variable with mean value m. Construct now the Poisson pro-
cess on [0, I}x { A }: if Ny < m, we take the first Ny, variables in {wp,(m—1)/2+; :
1 € j < m} to be the variables n((){,)l; if N, > m, we take all variables in
{wm(m_l) j2+j + 1 < j < m} and introduce N, — m supplementary variables.
In the following theorem, by the Poisson process we mean this special Poisson
process, which is closely related to the Dvoretzky covering.

Furthermore, we assume that ¢, < § for some small 0 < § < 1/2. The proof

of the following theorem will also be postponed until §8.

THEOREM 4: Suppose {I, < § for some § < 1/2 and [ k(t)1~"dt < co. Then
P"%|15.1; and Q'*|j5.) are almost surely equivalent.

Proof of Theorem 1 (c): In the proof of Theorem 1 (a), we see that Fj is a Borel
support of Q* for a = 3/a. So, dimQ* < dim F3. Then by Theorem 1 (b), we
have

dim Q® < dim Fy < 1~ [3log(8/a) — (3 - a)].

Therefore, we have only to show that

(5.1) dimQ* > 1~ [Blog(B/a) — (8 — a)].

We are now going to prove (5.1) by showing that Q% is equivalent to P'* and
that

(5.2). dim P'* > 1 — [Blog(8/a) — (8 — a)].

Thus we will finish our proof.

We first remark that the Poisson multiplicative chaos P'® is equivalent to its
tails Ry (it is the same for P® and its tails R2). In fact, if P’* is defined by
weights P (we adopt the same notation as in [F1], a theorem in which it will be
applied), then R¢ may be defined by the weights P! with

Pl=1 (1<j<n), P'=P (j>n)

Thus a simple application of the criterion in [F1] (Theorem 2.1) allows us to get
the equivalence. The same argument shows that, the multiplicative chaos Q'® is
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also equivalent to its tails. Actually there is equivalence between the restrictions
on any smaller interval of P’* and its tails (and of Q2 and its tails).

By this remark, in order to compare P'* and Q' (are they equivalent or not?),
we have only to compare their tails, one tail of each. However, by Theorem 4,
for any 0 < § < 1/2, some tails of P’* and Q'* restriction on [4, 1] are equivalent.
Therefore P'®|[5 1) is equivalent to Q"*|s 1) (V6). Since almost surely, P'*({0}) = 0
and Q'*({0}) = 0, it follows that P'* and Q'* are equivalent on [0, 1]. Recall that
Q'* and Q° are equivalent (Proposition 3). Thus Q% and P'* are equivalent.

The inequality (5.2) is true if dim P'* is replaced by dim P® (Theorem 3).
Actually the very inequality (5.2) may be proved in the same way as Theorem 3.
It suffices to note that

n
«
0 ~ e E l’; ~ alogn.
i=1

So, Proposition 1 and Proposition 2 remain true if £, is replaced by £,. ]

6. Variation of N, (¢), Proof of Proposition 1

The following lemma will be useful.

LEMMA 1: Let X be a Poisson variable with mean value m. For numbers m™
and mt such that 1 < m~ < m < m* < oo, we have

m+
P(X>m%) < exp(- m+mt -m‘”og—;),

; _ _ _.m
P(X<m™)< exp(—m+m —-m log—?).
Proof: By the Markov inequality,
P(X>m") < e_’\m+IE(e)‘X) = exp(—mtA + (¢* — 1)m)

holds for all A > 0. Now minimize over ) (the minimizing point is log(m™*/m)).
In the same way, we can prove the second inequality by using the fact that for
all A > 0,

P(X <m™) < E(e™*X). 1

The following corollary is an immediate consequence.
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LEMMA 2: Let % < d <1land0 < n < 1. There is a positive constant M > 0
such that for any Poisson variable X with mean value m > M we have

P(X <m—m’) < exp(—(1 — n)m*~1),
P(X > m+m®) <exp(—(1-n)m*1).

Proof of Proposition 1: 1t is clear that for any ¢ > 0 we have
IN(t) — Ne(8)| < N(D:ADy).

We cover the interval [0,1] by [£-!] + 1 intervals of length /,,, which we denote
by {Je} (1 <k <[f7']+1). Then

sup Ny, (DiADg) < sup sup N, (D:ADy).
t,s€(0,1);]t—s|<En k tedy;|t—s|<ln

If |s — t| < £,, we have

sup N, (DiAD;) < Ne, (Dg)
t€Jr;lt—5|<ln

where
Dy = U DD,
tEqu|t“3|Sen

Notice that Dy is a union of two strips (not disjoint); one is vertical and the
other is oblique with slope —1 but both are of width 3¢,,. Hence

Ve, (Di) =Y A© 8, (Di) <2+ (36,) Y 1= 6L,n = O(1).
j=1 j=1

Apply Lemma 1 to m* = T%;go’gl—n with 7 > 0 sufficiently large. For n > 0, we

have

P( sup Ne, (DAAD,) > m™) <3 P(N,, (D) > m*)
t,s€(0,1);]t—s|<lp 3

<O(¢, 'exp(—(1 — m)ym™ logm™))

1
So(n(l—’?)2T—1 )

Take 7 and 75 such that (1 — n)%r > 2. Then apply the Borel-Cantelli lemma.
|
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7. Tail measure R?, Proof of Proposition 2

The kernel associated to the truncated measure p. is denoted by k.. The corre-
sponding function ¢ will be denoted by ¢
For p > 2 and p points t1,...,t, on R, denote

14
Dc(tr,... tp) =E [ P2(t;).
j=1

For any finite interval I, we have

Pa(I p_/ / tl,... dtl

So, in order to estimate P*(I), we are led to estimate ®..
LEMMA 3: Supposet; >t >+ >t,_1 > t,. Then

p—2 ,p—i—1 at(1-a)®
B (ty,...,tp) = H( 11 ;ce(tﬁm—zj)) :
j=1

1=0
Proof: Forl1<j<pandl<k<y,let
Dix={(z,y) i tjy1 <x <tj,—r+tj_oo1) <y <~z +tjg}

with convention t,,; = —oo and to = +oo). This is a partition of | J7_, D;, and
p+ j=1"*1;
points in Dj j are repeated k times. Then we have

P P
> N(Dy,) =D kN(D;
j=1 j=1l k=1
Since N¢(Dj)’s are independent Poisson variables, we have
> NADL) P
]E(IZ;:l (Dt = eXp[ZZ'/E(DJ & CL — 1)]
j=lk=1
Also we have
p
H exp((a — 1)ve(Dy;)] = exp[ (a—1 ZZkVE(Df»k)]'
i=1 j=1k=1
By combining these, we get the expression

o
D (t1,...,tp) =exp [Z Z akVE(Dj,k)]

j=l k=1
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where ay = (a* — 1) — k(a — 1). Notice that a; = 0.
Now remark that

(D] k) _Vc(DtJ N Dt] (k— 1)) Ve(DtJ+1 N DtJ (k— 1))
- Ve(Dtj N Dtj—k) + VE(Dtj_H n Dtj—k)'

A simple calculation gives v (D; [} Ds) = ¢(t — s). So we have

Ve(Djk) = @e(tj—ti—(k=1)) —Pe(tjr1—tj—(k=1)) —0e(t; —tj—k) +0e(tj41—tj—k).

(with the convention that p(oo) = 0, so that for vc(D; ;) the third and fourth
terms are zero; for v.(Dpp), even the second term is zero; for ve(Dp ) with
1 < k < p, the second and fourth terms are zero).

We are ready to prove the expression of ®(¢;,...,t,) by induction on p. The
case p = 2 was known [FK1]. Suppose the expression is true for p. Notice that
the partition {D;x} depends on p. To distinguish, we use {D’ ;} to denote the
corresponding partition for p + 1. We remark that D;-’,c =D, forl1 <j<p.
So, if we let

F(ti,....tp) =log ®(t1,...,tp),

we have
p+l j p
Fe(ty, ... tp tpr1) — Fe(t, .. Zzaklle k) Zakve(Dpk).
j=p k=1 k=1

When an extra point £, is added, D, changes as follows:
Dy =D, kUDp+1k+1 (1<k<p).
There is again a new portion Dp +1,1» but it doesn’t contribute to Fe(ti,... tp+1)
because of a; = 0. Note that we have
alVe(D;'m) + aZVe(D;)+1,2> —awe(Dp1) = a2[Fe(tpr1 — tp) — Feltps1 — tp-1)]

and, for 2 < k < p, we have

CLkI/C(D;,k) + ak+11/6(D;,+17k+1) — axVe(Dp i)
= (ak+1 — @) [Fe(tps1 — tp_(k—1)) — Feltpy1 — tp—r)]-
Adding these p equalities gives
Fe(ti,. .ty tpr1) — Felth, ..., tp)

p+l

= aZFe(tp+1 — tp) + Z(ak —2an_1+ ak_2)F€(tp+1 — tp_(k__g)).
k=3
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Notice that

az = (1~ a)2» ar —2ap_1 +ap_o = ak‘2(1 - 0)2 B<k<p+1).

It follows that

@e(tl .. tp+1) P k—1yq_ \2
Bnh S LA A LA k.(t — b, )8 T (A=a)?
Be(tr, .- tp) lle(wl p—(k—1))

Thus the induction is finished. [}

Suppose 0 < a < 1. Let

_1-a! 1
=Ty a1

(1<r<p-1).

We have S ¢-! = 1. Let I = [¢,d]. By the Holder inequality, we get that
E(P*(I))? is bounded by

p! // @e(tl,..‘,tp)dtl'”dtp

-1

¥4 p—r -1 l/qr
<p! H ( // H ke(tjer — tj)(l—a)(l_ap ddty - -dtp)
r=1 % et < <Sta <ty <d I =1

p—1
<p! / .. H ké(tj+1 -~ tj)l_adtl .. -dtp.

We have used the facts that kc(t) > 1 and ke(tj+r — t;5) < ke(tj41 —t;) because
ke(t) is symmetric and decreasing on (0, 00). Thus we obtain

LEMMA 4: Suppose 0 < a < 1. For any interval I = [c,d] and any integer p > 1,
we have

p-1
ey sp [ [ TTkdn -0 da -t

LEMMA 5: Suppose €, = v/nwith0 <~y < 1. Forany 3 > 0 and any 0 < s < £,
we have

/ (s — u)Pexp Z(ﬁj —u)ydu < CB(1 — 7,14 B)f1s'~7+58
0

j=n
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where B(-,-) is the Beta function and C is a constant independent of v, 3 and n.

Proof: Introduce the change of variable # = vs. The integral to be bounded
becomes

1 00
51+ﬂ/ (1 —v)Pexp Z(fj — sv) 4 dv.
0 =

For fixed v, define m(v) as the integer for which m(v) < v/sv < m(v) +1. Then
the sum }~°7 (¢; — sv)4 is bounded by
m{v)

m(v) ¥ ln
E’ . log ——— o
: n€J<7logn 1<’Yogsv(n 1)<'ylogsv+log2

for n > 2, whence the integral in question is bounded by
1
231“3_7(71/ (1 —v)Pv™dw.
0

That proves the inequality for n > 2. Notice that exp Z;’;l(ﬂj —u)y mu".
A direct calculation shows that the inequality also holds for n = 1 if C > 2 is
chosen sufficiently large. ]

Proof of Proposition 2: Recall that the kernel associated to {¢;};>n is
o0
k™(t) = exp Z (45 — |t +
j=n+l

Then we have k™ (t)'=¢ = k) ((1 — a)t) where k™ is the kernel associated to
{(1 —a)¢;};>n. Let I = [e,d] with |I| = £,4;. By Lemma 4 and the Fatou
lemma, we get that E{R2{I))? is bounded by

p—1
p! // TTE™( = a)(tjer — t;))dty - dt,
e<ti < Stp<d I

-1
p! i
~T—ap // T &™) i = t5)dts - dt.

c(l-a)St1 < <tp<(1-a)d I =t

The last integral is equal to

p—1
1.(n
H k( )(8j+1 - sj)dsl . 'dSp
0<s1 <2< Sap<(1=a)lnp I71
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// ]}(n)(w) . --I}(")(u,,)dul - duy

w1 20, up >05uy +-+ +up<t7n+1

€n+1 n+1—u1 n+1 (u1+u2)
/ / ™ (ug) / N

U1 — (U1 Fup_2)
. / k(")(up_l)
0

g1 ~(ui+-Fup-1) _
X / k™ () dupduy— 1 - - - dugduy
0

where £y = (1 — a)lny; = (1 — a)|I]. We have made changes of variables.
Denote

v=(1-a)a.
By Lemma 5, the last integral is bounded by

C(1—a)"B(1 — 7, DI (lny1 — (ur + -+ + up_y))*™7

where C' is the constant in Lemma 5. Substitute this into the integral of the next
to last integral. Then, using once more the preceding lemma, the last double
integral is bounded by

C*(1—a)*B(1 =7, )B(L =7, 1+ (1 = Y (b1 — (w1 + -+ up_1))*7.

Inductively we get that the initial integral is bounded by

CP (1 —aPIP B -1+ (G -1 -).
j=1

By the formula B(p, ¢) = I'(p)T'(¢)/T(p + q) where I is the Gamma function, we
have

p—1 I'(1— P!
]1'[1]31—7,1+(]—1)(1— 7)) = F(1+(( Z;(l—v))'

Therefore, there is some constant C' (not the same as that of Lemma 5) such that

pl(CII])P

B DY < s -1y

It can be deduced that there are constants A > 0 and B > 0 such that for any
&€ > 0 we have
Eefn () < Aexp(B(E|1))/ 7).
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It follows that the inequality
Eeffr ) < Aexp(B(€ln11)"/177)

holds for any interval I such that |I| < £,,;; (we deduce it from the preceding
one using the monotonicity of the measure R%). Now divide [0,1] into intervals
jn = {J], ey Jk(n)} where
Jm = [a(m=1)/(n+1),em/(n+1)] (1 <m < k(n)),
Jk(n) = [a(k(n) - 1)/(”’ + 1)7 1]
Notice that a(k(n) — 1) < n+ 1 < ak(n). Then for arbitrary r > 0, for any
J € Jn, we apply the above inequality with & = ¢} +1 to get
P(R(J) > rlng1loglyyy)

< Aexp(B(Elu )0 — rélyalog (1) = 0 ).

n’l‘
Hence

P(max R7(J) > rlays logry,) < Y P(RA(T) > rlnyrloglyyy)
" JETn

:O<%t‘l—)) - O(nTl—l)

since k(n) < 1+(n+1)/a. Take r > 2. We have, from the Borel-Cantelli lemma,
that

a(J
C{w) := sup max —RL—— < 00
neNJE€ETn €n+1 lOg €n+1

with probability equal to one. Now it suffices to observe that any interval of
length 7, can be covered by at most three intervals in 7. ]

8. Equivalence of Q% and P*

Proof of Proposition 3: By a criterion in [F1] (Theorem 2.1 (a)), it suffices to

show that
E aXn(t—wn)+x5 (t—wn) 0
H 0+ (@ DA+ (@1t

where Y’ is the characterlstlc function of the interval (0, ¢/,). The distribution of
X = xn(t —wy) + x,(t — wy) does not depend on t. We have actually

P(X=0)=1-¢(,, P(X=1)=(,-f, P(X=2)=(.
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Thus, we have
EVaX = exp[—tn + Va(ln — £,) + al}, + O(£2)].

On the other hand,

VF @ DG (@ DE) = exp[ 22 (6 +£) +0(2)].

Then the general term in the above infinite product equals
1 2 ' 2
exp| - 3 (V@ — D2(tn — £,) + O(&2)].

Since (£, — ¢!,) < 0o and Y_ €2 < 0o, the infinite product is positive. |

Proof of Theorem 4: Since ¢/, < 4, the multiplicative chaos P'* restricted on
[4,1] involves only the random points with abscissa in [0, 1]. Let 1) ,)(t) be the
characteristic function of the interval (0, Ap,), which is periodically extended on
R with period 1 so that it can be considered as a function on T. Let

m
Sm(t) =D Loam){t — Wm(m—1)/245)>
j=1

and

Npm
Nnt) = N(De AR x {Am}) = D 1o a0y (E = im.5)

=1

where Ny, is a Poisson variable with mean value m, nm,; = Wn(m-1)/24; for
1< j < mand nn,; for j > m are also uniformly distributed. All variables Ny,
and 7y, ; are independent. By the same criterion we used for proving Proposition
3, it suffices to show that

aSm(t)+Nm(t)

(1+ (a — 1)Ap,)mele—1)mAm >0

First notice that

(1+ (a—1An)™ < exp((a — 1)mAy,).
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Then we are led to estimate E := EvVgS=O+Nu (@),
o mn’ 1 m 1 n
E :e_m Z _Eaf 2;‘:1 1(0->\m)(t_wm(m—1)/2+j)+§ Zj=1 1(0,)\m)(t_7lm,j)
n!

n=0

m n
—e—m Z M a2 i 1oam) (E=1m )3 307 L0, am) (B~ Wm(m=1)/245)

!
0 n:

o0 n n
+ e—’m § m ]Easm (t)+% Zj=m+1 l(o,xm)(t_nm,j)
n!
n=m+1
m n o0 n
— m m
=€ m[ E —TAm'n + E —‘Bm,njl
n. n.
n=0 n=m+1

where
Apn=01+(@a—1)2)"1 + (Va—-1)A)™ ",

Bmn =14 (a—DA)™1+ (Va—1)A,)" ™.
Take 1/2 < € < 1. There is a constant ¢; > 0 such that for m — m® < n < m,
(14 (Va—1)A,)"" > emrmm,
and for m < n < m+ m°,

(1 + (\/a - ]),\m)n—m > e—clz\mm‘
14+ (a— 1)y, = '

So both A, (when m — m® < n < m) and By,, (when m < n < m + m¢) are
bounded from below by

(14 (a=1A,)" - em =™,

It follows that

m+m*
_ e _ 1+ (a—1)An))"
EZe Cc1Amm Le—™ Z (m(
n=m-—ms¢ TL'

=e~Ammig(a=mAnl _ P(Y <m—morY >m+ m°)]
where Y denotes a Poisson variable with mean value m(1 + (a — 1)\;;) ~ m. By
Lemma 2, the probability P(-) in the last expression is bounded by e=¢2™*"" for
some ¢y > 0. Thus, the infinite product is bounded from below by

(oo}

o0
exp{—— 1 Z /\mme] H (1- e‘czmh_l) >0. 1

m=1 m=1
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9. Final remarks

1. The method that we have used to prove Proposition 2, i.e., estimating the
Laplace transform of R%(I) and then using it to bound probabilities, does not
work when a > 1, as the Laplace transform of R2(I) is infinite for all £ > 0 in
this case. Actually we have E(R? (I))? = oo for large p. In fact, by Lemma 3, for
any interval I = [¢,d] we have

E(P¢(I1))P > p! // ke(t, —t1)7dt1 - t,

e<ty<Shi<d

where 7 = aP~2(1 — a)?. Introducing changes of variables, we have

E(P?(I))? >p! // ke(us + -+ up) dug -y
ur 4 +up <|1|

1|
Zp!/ ke(vp)" dup // dvy -+ vpq
0
vty ST -vy

P |Ilk (v,)T(JI| = vp)P " dv

Te-DtSe 7 ? ”
(For simplicity, we do not mark u; > 0 and v; > 0 in the domains of integration).
It follows that if aa?~2(1—a)? > 1 (recall that £, = a/n), the last integral tends
to infinity as ¢ — 0. Therefore the martingale P*(I) doesn’t converge in LP
for large p. It is equivalent to saying that E(P*(I))? = oo or E(R%(I))P = oo.
However, as we have seen, when 0 < a < 1, the same martingale converges in LP
for all p. That is an essential difference between the case 0 < a < 1 and the case
a>1.

2. In [F3], there is a discussion of LP convergence in the case a = 1, where the
martingale is suitably defined.

3. If we had a better estimation than that in Lemma 4, the restriction
max(a — 1,0) < 8 would be relaxed. But notice that there is nothing better
to do when «a < 1 for max(a—1,0) = 0.

4. Instead of EH?:I %(t;), we consider EHle Q2(t;). Finding a formula
similar to that in Lemma 3 seems more difficult. This is why we call for Poisson
multiplicative chaos. The cost is the equivalence theorem (Theorem 4).
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