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ABSTRACT 

Consider the Dvoretzky random covering with length sequence {o~/n}n> 1 
(a > 0). We are interested in the set F/3 of points on the circle which are 
covered by a number/~ log n of the first n randomly placed intervals. It 
is proved among others that for a certain interval of/3 > 0, the Hausdorff 
dimension of F• is equal to 1 - [/~ log(fl/a) - (~3 - a)]. This implies that 
points on the circle are differently covered. 

1. I n t r o d u c t i o n  

We consider  the  circle T = R / Z  which is identif ied wi th  the  interval  [0, 1), a 

decreas ing s e q u e n c e  { ~ n } n ~ l  (0 < ~n < 1) s u c h  t h a t  ~-~n ~n ~- OO and  an i.i.d. 

r a n d o m  s e q u e n c e  {~dn}n> 1 of the  uniform d i s t r ibu t ion  (Lebesgue d i s t r ibu t ion) .  

We denote  by In  (or more  precisely In (w)) the  open interval  of length  en, wi th  left 

end poin t  Wn. The  Dvore tzky  covering p rob lem is to give necessary condi t ions  

and  sufficient condi t ions  on the length  sequence (~n) in order  to  cover the  whole 

circle T a lmos t  surely (a.s. for shor t ) ,  or equivalent ly  to  have 

n = l  
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where P is the probability measure of the underlying probability space (~t, A, P).  

The problem was raised in 1956 by A. Dvoretzky [D]. It at tracted the attention 

of P. L6vy, J. P. Kahane, P. Erd6s and P. Billard who made significant contribu- 

tions (see [K1]). In 1972, L. Shepp [S1] gave a complete solution to the problem 

by finding a necessary and sufficient condition 

o ~  

E n-~ exp(~' + ' " +  g~) = c¢. 
n = l  

To get more information on further developments of the subject, we refer to 

J. P. Kahane's book [K1] and his nice survey papers [K4, K5]. 

Prom the Shepp condition, we see that when the whole circle is covered, every 

point on the circle is covered by an infinite number of intervals. L. Carleson then 

asked the question: How many intervals cover one point? (personal communica- 

tion to J. P. Kahane). This question was partially answered in [FK1] in the case 

gn = (~/n with c~ > 1: Let 

Nn(t) = Card{1 < j <_ n : In ~ t}. 

There are two constants As, Ba depending on a with 0 < As < a < B~ < c¢ 

such that almost surely for every t E •, we have 

Nn(t) Am < liminf Nn(t) < limsup < B~. 
- n - ~ o ~  l o g n  - n ~  l o g n  - 

A nearly trivial result (see also [FK1] for explanation) is that almost surely for 

almost every t c T (with respect to Lebesgue measure), we have 

lim N,,(t) 
- -  - -  O ~ .  

n~c¢ log n 

Having this information, we would like to raise some natural questions. We 

take a positive number /~ which may be different from a and we consider the 

(random) set 

F ~ =  { t ¢ ' i ~ :  lim Nn(t) } 
n - ~  logn - ~ " 

Is the set F~ non-empty for some/3 # a? How big is the set F~? How rich is the 

set of ~'s such that F~ is non-empty? We say that points in F~ are ~-regularly 

covered. We say that t E I' is irregularly covered if 

lira inf N,~(t) N~(t) 
n - ~  logn < limsupn__~ 1-~gn " 
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Are there irregularly covered points? How many are there? 

In this paper  we partially answer these questions by showing the following two 

theorems. We will use dim E to denote the Hausdorff dimension of a set E. 

THEOREM 1: Let  en = a / n  with a > O. 

(a) I f  /~ E ( a -  v ~ , a  + v~ )N(O,  oo), we have almost  surely 

l /3  - 2 
dim F~ _> 1 > O. 

(b) I f  /31og(/3/a) - (3 - 5)  <_ 1, we have almost  surely 

dim FZ <_ 1 - [/3 log(/3/a) - (/3 - a)]. 

(c) I f m a x ( a  - 1, 0) < /3  < a,  we have ahnost  surely 

dim FZ = 1 - [/3 log(/~/a) - (/~ - c~)]. 

We remark that  the statement in part  (b) of Theorem 1 holds for the packing 

dimension of FZ, which is what we actually prove. As a consequence, in part  (c) 

of Theorem 1, the Hausdorff dimension can be replaced by the packing dimension. 

THEOREM 2: Let  t,~ = a / n  with (~ > O. Ahnos t  surely, the set of  irregularly 

covered points  is o f  Hausdorff  dimension 1. 

One of the main ideas is to consider the following formally defined random 

measure (weak* limit) 

co a l ( o , e n ) ( t _ w ~  ) 

Q~(dt) = I I  1 + (a - 1)en dt (with a ---/3/a) 
n = l  

and to show that  the measure Q~ is supported by FZ. Such a measure is called a 

multiplicative chaos. We are then led to estimate the dimension of the measure 

Q% It is more practical for us to work with a variant of Q~, called a Poisson 

multiplicative chaos, that  we denote by P~. We say that  P~ is a variant because 

pa  is a.s. equivalent to Q~ (Theorem 4). Therefore d imQa = d i m p a  a.s. On 

the other hand, we calculate directly dim P~ (Theorem 3). 

In §2, we introduce the notions of multiplicative chaos and dimension of mea- 

sure. Theorem 1 (a)-(b) and Theorem 2 are respectively proved in §3 and §4. 

The more difficult part  is Theorem 1 (c) whose proof occupies the rest of the 

paper. 

We point out that  a study on dyadic random covering is carried out in [FK2]. 

The results obtained there are more complete. 
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2. Too ls  

We need two tools. The first one is the infinite product of processes studied in 

a general setting by J. P. Kahane [K2]. We briefly present it here for the case 

adapted to our purpose. The key part  for us is the Peyri~re probability measure. 

Let (fn) be a sequence of non-negative Borel functions on T whose integrals with 

respect to Lebesgue measure are all equal to 1. Consider the (random) measures 

n 

Qn(t)dt := I I  ]j(t - wj)dt. 
j = l  

I t  was proved that  a.s. the sequence of measures Qn(t)dt converges weakly to a 

(random) measure, called a m u l t i p l i c a t i v e  chaos ,  which we denote by Q. The 

partial  product sequence Qn(t) is called an i n d e x e d  m a r t i n g a l e ,  because it is 

a martingale for each t. If  

f f ~.~lEf,(t= -wj)f,(s-wj)dtds= f f ,='~f'" ,,(t-s)dtds 

is bounded as n --+ oc (where ](t) = f(-t)), the martingale f~ Qn(t)dt converges 

in L 2 and the measure Q does not vanish and a probability measure Q on f~ x T, 

called the P e y r i ~ r e  m e a s u r e ,  can be defined by the relation 

/,× ~(~,t)dQ(w,t) = E / :(w,t)dO(t) 

(for all bounded measurable functions ~). A very useful fact is that  Xn = 

t - w~ (n >__ 1), considered as random variables on f~ × T, are Q-independent. 

Furthermore, we have the formula 

z e h ( t  - = 

(for any positive or bounded Borel function h). 

The second tool is the following principle for estimating the dimension of a set 

[F2]. The e n e r g y  i n t e g r a l  of order r (0 < T < 1) of a measure # on T or R is 

defined by 

i•= f f dp(t) d#(s) 

The ( lower)  d i m e n s i o n  of a measure #, denoted by dim #, is the supremum of 

/3's such that  #(E)  = 0 for any E with d i m E  < 3 [F2]. So, for a given set F,  

we have d i m F  _> d imp  if # (F)  > 0. To estimate the dimension of a measure, we 
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shall use the fact that  dim # > 7- if I~ < c~ IF2]. In general, we have the formula 

[F2] 

d i m p = s u p { 7 > O : l i m i n f  l °g#(Br(x) )  > 7  /*-a.e.} 
- -  ' r - ~ O  l o g  r - 

w h e r e  Br(x)  denotes the interval centered at x of length 2r. There is also a 

notion of upper dimension, but it is not needed here. 

Notation: For a sequence of real numbers an and a sequence of positive numbers 

bn, an -- O(bn) means Janl <_ Cbn for some constant C > 0; an ~ bn means 

an -- O(bn) and bn = O(an); an ~ bn means an/bn -+ 1. 

3. P roof s  of  T h e o r e m  1 (a) and  (b) 

Proof of Theorem 1 (a): For a > 0, consider the random measure Q~ defined 

by the indexed martingale 

f i  aX~(t-~) 
Q~(t) = 1 + a(a - 1) / j  

j = l  

where Xj is the characteristic function of the interval (0, a / j ) .  Take a such that 

a(1 - a) 2 < 1. The corresponding indexed martingale is a L 2 martingale and 

then gives rise to a non-vanishing random measure Q~ [FK1]. That Q~ does not 

vanish is a tail event because the j - th  factor in Q~(t) is bounded from below by 

cj and from above by Cj where the two constants cj > 0 and Cj > 0 can be 

chosen to be 
min(a, 1) max(a, 1) 

c j -  l + ( a - 1 ) g j '  C j -  l + ( a - 1 ) g j  

So, a.s. we have Qa ¢ 0. Let Q~ be the associated Peyri~re measure. We 

claim that, for any 7/ > 1/2, Q~-almost surely (then almost surely Qa-almost 
everywhere) 

(3.1) ~ '~xj  ( t  --  ~ j )  : aoLlog n + O(log n n) (n --+ c~). 
j = l  

We postpone the proof of (3.1). It follows from (3.1) that almost surely 

Qa(F c ~ = O. 
a m /  

That means F ~  is of full Qa-lneasure. Thus we have almost surely 

dim Fa~ _> dim Qa. 
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On the other hand, consider the energy integral of Qa of order r: 

i?o= f faQ (t) aQ°(s) 

By the calculation in [FK1], it may be proved that E/Q" < <x~ if 

It - 8[ a ( a - 1 ) 2 + T  < c o .  

The finiteness of the last integral is guaranteed by a(a  - 1) 2 + 7- < 1, in other 
words, T < 1 -- a(a  -- 1) 2. Then, under this condition on 7, I Q° is almost surely 

finite. This implies that 

d imQ a _> 1 - a(a  - 1) 2. 

To obtain the claim in Theorem 1 (a), it suffices to take a = / ~ / a  for a given ~. 

We now prove (3.1). Consider 

 =xj- QoXj 
j = l  

where X j  = x j ( t  - wj)  (j  >_ 1) are Qa-independent variables (see §2). We first 

estimate the variance of Sn. Notice that 

aX~(t-~) 
EQoXj  =E);j (t - wj) 1 + a(a  - 1 ) / j  

ac~/j ac~ (~.ff) 
- ---- - - : -  + O . 

1 + ct(a - 1 ) / j  3 

Since X j  takes just two values 0 and 1, we have EQo X~ = EQa Xj .  Hence 

EQ, Yj 2 EQ. Xj(1 EQ~ X j ) a a  ( j ~ )  = - = ---:- + O . 
3 

Then 

(3.2) EQo S~ = O(log n). 

Next, by the Kolmogorov inequality and (3.2), 

Qa(l<n<Nmax ISnl>_ A)<_ E ~ S ~  _ O ( ~ 2 N )  
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holds for any N > 1 and any A > 0. Apply this inequality to N = [exp k ~] 
and A = k v~ with A = 2/(27 / - 1), where [x] denotes the integral part of a real 

number x. We get 

Q~( max ISnl > k ' a )  = O ~ -- O ~ . 
l < n < e x p k  h 

According to the Borel-Cantelli lemma, Qa-almost surely (then almost surely 

Q~-almost everywhere) 

(3.3) max I&l=O(k'a) .  
l ~ n K e x p k  A 

Suppose exp(k - 1) A < n _< expk A. We have (k - 1) A < logn. So, by (3.3), 

I&l = O(k 'a) = O( log '  n).  

n Thus (3.1) is proved for ~ j = l  EQo Xj  = aa logn + O(1). | 

Proof of Theorem 1 (b): 
length 2 - j .  Let 

Then let 

Fix a dyadic interval I = [~,/+--All2~ J (0 <_ i < 2J) of 

2 j 

s j ( t )  = - 

k = l  

Xt = ~ n S j ( t )  }) = maxSj(t) .  
' t e l  

We will distinguish two cases: /3 > a and 3 < a. To deal with the first (resp. 

second) case, we will work with }} (resp. XI). Suppose fl > a. For any small 

6 > 0, let 

It is clear that  

It follows that 

Cj -- {I :  I I [=  2 - j ,  1~) _> (/3 - 6)j log 2}, 

Mj = cardCj = E l{vr_>(Z-e)jlog:}, 
I 

G j =  U I. 
[EGj 

oo 

g = l  j= .¢  

oo oo 

direR Ffi _< supdimp N Gj <_ supdimB N Gj 
g > l  g > l  

- j = e  - j=e 
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where dimp denotes the Packing dimension and dimB denotes the upper box 

dimension (see [Mat] for their definitions). However, Cj is a 2-J-cover of N ~ j=e Gj 
when j _> g. So we have 

dimB N Gj < lim log Mj 
- j - + ~  log 2J " j=~ 

Then we are led to estimate the random variable Mj. Take an a* such that 

0 < a < a* < /3 - 5. We consider a covering with enlarged random intervals. 

Denote 
2 j 

s;(t) = ~ x * ~ ( t - ~ k )  
k = l  

where X~ is the characteristic function of the interval with the same center as 

(O,c~/k) but of length a*/k. Let I -  (resp. I +) be the left (resp. right) dyadic 

interval of length 2-J next to I. Consider the random set 

E1 := {t E I - U l U I * :  S;(t) > Y1}. 

Suppose YI = Sj(to) = N. That  means there is a (random) point to in the 

interval I which is covered exactly N times. If the interval Ik covers to, the 

corresponding enlarged interval must cover the interval centered at to of length 

(a* - a)/k. It follows that  every point in the interval (to - ~V-,~*-" to + ~:V-)~*-~ is 

covered by at least N enlarged intervals. So we have 

C~* - -  O~ 
]E,I _> 2J 

By the definition of Et ,  we have for +~ > 0 

e~Y' lE, I <_ £, e;~S'; (t) dt <_ ~_  U iU t+ e;~S; (t) dt. 

Then, by taking expectation, we get 

~xr, <l_r_U!Ur+l~xs;~°) 
- - ' - I E I I  

2J 

n (1 + 
k = l  

Consequently, by using the Markov inequality, we get 

Eex~; 
P(gr  _ (~ - ~)j log 2) <_ 2J(B-~)~ 

< 3exp((e a - 1)c~*) . 2_~h(x ) 
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where 

h(A)  = (/3 - 51A - ~ * ( ~  - 1). 

We remark that  the function h(A) is maximized at A = log ~-fi~6 > 0 and its 

maximal value is equal to 

Thus we get 

h ~  = (/3 - 5 ) l o g  - -  - 
/3-5 

a *  ( / 3 - 5 -  a * ) .  

3e/3-a* - 5  
EMj = E P(~) >- (/3 - 5)j log 2) < a *  -- a 

I 

Consequently, for any r />  0, 

E E 2-J(1-hma×+r~)Mj < CX:). 

J 

Then almost surely for any g > 1, we have 

dimB 5 Gj < lira sup log Mj 
_ J - ~  ~ _< 1 - hmax +/].  

j=e 

Let successively a* --+ a, 5 --+ O, ~ -+ O. We get 

• 2J(1--hma×). 

dimp F/~ _< 1 - [/3 log(/3/a) - (/3 - a)]. 

Suppose now ,8 < a. The proof is almost the same. Let us just point out the 

minor differences we should make. For any small 5 > 0, let 

Cj = { I :  II[ = 2-J,XI <_ (/3 + 5)j log2},  

M r = C a r d C j  = ~ I { x , < ( Z + ~ ) j  ~ogZ} 
I 

(">" is replaced by "<" and " -5"  is replaced by "+5"). 

In order to estimate the random variable Mj, we take an a** such that 

0 < /3 + 5 < a** < a and consider a covering with shortened random inter- 

vals. Let 
2 j 

s ? ( t )  -- ~_.  ~*~*(t - ~k) 
k=l 

where X~* is the characteristic function of the interval with the same center as 

(0, a/k) but of length a**/k. It may be proved that  for any A > 0 we have 

2 j 
3 (1 - 1) a** T) k=l 
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Consequently,  by using the Markov inequality, we get 

P(Xt  <_ (/3 + 5)j log 2) _< 2-J(~+5)~ 

< 3exp((e -~  - 1)c~**) . 2_jh(),) 
- -  OL - -  0 ~ * *  

where 

h(,~) = - ( /3  + 5)A - c~**(e -~ - 1). 

The  function h(A) is maximized  at  ,~ = log ~+~ > 0. 

4. P r o o f  o f  T h e o r e m  2 

Take a sequence a = (an)n>_l of posit ive numbers  such tha t  5 = supj_> 1 laj - 11 
< co. Note  t ha t  we have 

2 
E an 

n 

Consider the r andom measure  Qa, which is a var iant  of the measure  used above, 

defined by the indexed mar t ingale  

f i  _ x j ( t - ~ j )  
a a j  

Qn(t) = 1 +~(aj ~ i ) / j "  
j = l  

I f  c~5 2 < 1, the corresponding indexed mar t ingale  also gives rise to an a lmost  

surely non-vanish r a n d o m  measure  Qa. Denote  again by Qa the associated 

Peyri~re measure.  In the same way as we prove (3.1), for any ~/ > 1/2 we 

can prove t ha t  a lmost  surely Qa-a lmos t  everywhere 

n ~ a j  

E j(t- wj) = +O(log'n) 
j = l  j = l  7 

Take now 0 < 5 < 1, a number  sufficiently small  such tha t  c~5 2 < 1, and a rapidly  

increasing sequence of integers (3'y) such tha t  

~/1 "~- " " " -~- ")'k : O(~/k+l)  (k  -"+ (X)). 

Next  let (nk)k>_o be the sequence of integers defined by 

no = 1, 2_~k+~ : no 4- n l  -~ • • • --~ n k  
no + n l  -~- • • • -~- n k + l  



Vol. 131, 2002 INTERVALS C O V E R I N G  A P O I N T  IN D V O R E T Z K Y  C O V E R I N G  167 

Then define a sequence ( a n )  as  follows: 

a n ---- 1 - 6 i f  n o  --k . . .  q- n 2 k  < n < n o  + " "  + n 2 k + l ,  

a n  = 1 + 5 i f  n o  --}- . . .  + n 2 k - 1  < n < n o  + • " + n 2 k .  

For this choice of sequence (an)~ we get 

no+. . .+n2k  
a J = ( l + 5 )  log n o + " ' + n 2 k  

E j no q - ' ' "  -~- f'~2k-1 
j = l  

It follows that  

"~- O ( 7 1  -~- " ' "  Jr- ~2k--1)" 

no+. , .+n2k  

lim 1 aj _ 1 + 5. 
k - ~  log(no + . . .  + n2k) E ] -  - 

j = l  

Similarly, we have 

n o + ' " + n 2 k - 1  

lira 1 aj _ 1 - 5. 
k-~c~ log(no + . . .  + n2k-1) E 7 -- j = l  

So we have that almost surely Qa-almost everywhere 

Nn(t) 
liminfn_~ Nn(t)log n - < (1 - 5)a < (1 + 5)a _< limsUPn._+oo logn 

The energy integral of Qa of order r can be computed to be finite if a~ 2 + 7- < 1. 

So the dimension of the irregularly covered points is bounded from below: 

d i m Q a > l - a 5  2--+1 (5--+0). 

5. P r o o f  o f  T h e o r e m  1 (c),  Po i s son  mu l t i p l i c a t i v e  c h a o s  

The rest of the paper is devoted to the proof of Theorem 1 (c). In this section we 

just present the strategy of the proof. Details will be given in the next sections. 

As was seen in the proof of Theorem 1 (a), we have only to show that a.s. 

dim Qa >_ 1 - [/3 log(/3/a) - (3 - a)] 

where a = / 3 / a  (see the formula at the end of §2). Instead of Qa, we will work 

with a Poisson multiplicative chaos pa, because its dimension is easier to calculate 

(see the following Theorem 3). We will also prove the equivalence of Q~ and P~ 

(see Theorem 4), which implies that Q~ and P~ have the same dimension [F2]. 

In this way, Theorem 1 (c) will be proved. 



168 A . H .  FAN Isr. J. Math. 

Now let us give more details of the strategy. 

Define first the Poisson multiplicative chaos pa. Let A = dx be the Lebesgue 

measure on IR and let # be a measure on ~+ = (0, +co)  which is assumed finite 

on compact sets and concentrated on the interval (0, 1). Consider the product 

measure v = A ® # on R × ]~+ and then the Poisson point process (Xn,Yn) 
with intensity v. A corresponding Poisson covering problem was considered in 

[Man,S2] and its relation with the Dvoretzky covering was revealed by Kahane 

[K3]. For t C 1~, denote 

Dt = {(x,y) C R × R+: y > 0 , t -  y < x < t}. 

For a fixed positive number 0 < a < ~ ,  construct an indexed martingale 

pa(t) = aN~(t)exp[(1 -- a)v~(Dt)] (t • ~, ~ > O) 

where v~ is the truncation of v defined by ),®#¢ with tt~ = ttl[~,~), the restriction 

of # on [c, c~) and N~(t) is the number of points in the domain Dt of the Poisson 

process with intensity re. By discretizing e by a decreasing sequence {en}, we 

may write P2~ as a product of independent variables P~/P~_~ (co = c~ so that  

P~  (t) = 1). As in §2, we may define a multiplicative chaos which will be denoted 

by pa ,  i.e., the weak* limit of Pa N (t)l[o,ll(t)dt (see [K4] for more details). 

Many properties of the Poisson process are revealed by the kernel 

k(t) = k.(t) = expp(t)  

where 

~(t) -~ fR+ (y -ltl)+dtt(Y) 

(x+ = max(O, x) denoting the positive part  of x). 

Although many calculations in the sequel are valuable for arbitrary measure 

#, we will concentrate on the measure 

# = E 5,~ with e n = c~/n. 
n = l  

For this special case of #, we have 

k(t) = exp ~ ( e n  -Itt)+ ~ 1/Itl% 
n = l  
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Suppose m a x ( a  - 1, O) < fl < a .  / f  a = fl/(~, then almost surely 

dim pa _> 1 - [/3 log(fl/(~) - ( / 3 -  a)].  

The  proof  of this theorem is based on the following two proposit ions whose 

proofs will be postponed until §~6-7. The  first concerns the variation of Ne. (t). 

PROPOSITION 1: We have almost surely 

sup INe~(t) - Ne,(s)l = O io-~i-ogn " 
t,s~(o,U;It-sI<e~ 

The  second concerns the tail measure R a of pa,  where R~ is by definition the 

Poisson multiplicative chaos associated to the measure u (e~) = )~ ® #l(o,e~). 

PROPOSITION 2: Suppose 0 < a < 1 and a(1 - a )  < 1. There is an almost surely 
finite variable 0 < C(co) < oc such that for any n >_ 1 and for any interval I of 
length gn in [0, 1], we have 

1 
Ra(I)  <_ C(~)I / I  log ~ ] .  

P r o o f  of  Theorem 3: Let Ik(t) be the dyadic interval of the form [i2 -k ,  ( i+1)2 -k)  

containing t. Let  n be the largest integer such tha t  en ___ 2 -k .  Then  gn+l < 2 -k.  

Let ]k(t)  be an interval of length G which contains Ik(t).  Since Q = o~/n, we 

have 

I]kl ~ Ilkl ~ 2 - k  ~ i / n ,  ugh(Dr) = ~--~gj ~ c~logn. 
j = l  

Then  by Proposi t ion 1 and Proposi t ion 2, a.s. for any Ik(t) we have 

P~(Ik(t)) <_P~(l-k(t)) 

= _ fTk(t) age" (~)exp((1 -- a)ue. (Ds))dR~(s) 

1 0 1o n 
= O ( n  a( -a)e  ( ~ ) a N ' " ( t ) R ~ ( I k ( t ) ) )  

- -0  ( n~(l_~) e O( ~ ) a N~" (t)lik(t )l log ~ ) 

Then 

l iminf  l°gPa(Ik(t))  > 1 - a(1 - a) - l o g a l i m s u p  N~.(t) 
k ~  logIIk(t)l - , ~  l o g n "  

Let  Yj = N(Dtn (R× {gj })). Let  7 ~a be the Peyri6re measure,  which is well defined 

because a(1  - a )  2 < a(1 - a )  < 1. The variables ]Q(w,t) are Pa- independent .  
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n 
We have Ne. (Dr) = E j= I  YJ and 
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Em Yj = E ~aY~EaYj --- agy, Epo Yj 2 = E ~-V~ j~j2aYj 
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- -  - -  a ~ j  A -  ( a t j )  2. 

It follows that a.s. pa-a.e. 

lim Ne, (Dr__) _ a(~ 
~ o ¢  log n 

(see the proof of Theorem 1 (a)). Thus a.s. Pa-a.e. 

. • r logpa(Ik( t ) )  
lmmI - - - -  > 1 - a(1 - a) - aaloga. 
k-+c¢ log IIk(t)] -- 

By the formula at the end of §2, we have a.s. 

d i m P  a >_ 1 - a(1 - a) - aaloga = 1 - (a - /3)  - / 3  log(/3/a). | 

Following the idea in [K3], instead of {~n}, we consider another sequence {f~} 

which is constructed from {fn} as follows: 

~ ( ~ - 1 )  +1 . . . . .  ~tm(m+D2 = Am with Am = t?m(m+l).2 

Evidently g'~ < On. More important is 

- e ' )  < 

n=l  

e' k(t). It will It follows that  if k'(.) denotes the kernel associated to { ,~}, k'(t) ,~ 
be easy to check that Propositions 1 and 2 and then Theorem 3 remain true if 

~n is replaced by ~'~. Let Q'~ be the multiplicative chaos associated to g ' .  We 

have the following equivalence result whose proof will be postponed until §8. 

P R O P O S I T I O N  3 :  Suppose f k(t)O-~)2 dt < oc (that is a(1 - a) 2 < 1 when f~ = 
a/n) .  Then almost surely, Q~ and Q~ are equivalent. 

Now we compare Q~a with a Poisson multiplicative chaos. A Poisson process 

with intensity u may be constructed as follows. Fix the segment Jr,n = [r, r + 
1] × {gn} (r C Z, n _> 1). Let Nr,n be a Poisson variable with mean value 1. 

(J) The Poisson process with intensity ulj~. ~ is the set of points {r + ~r,n}l(j<Nr.n 
(J) where {yr,n}j>_l is an i.i.d, sequence with uniform distribution on [0, 1], which is 

independent of N~,n. The union of all such random sets, assumed independent, 

is a Poisson process with intensity u. 
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We assume that gn =gtn.  Recall that there is an i.i.d, sequence {wj} in 

the Dvoretzky covering model. We use these variables to construct the Poisson 

process. Let 
m(m+l)/2 

Nm = E No,n 
n=m(m--1)/2+l 

which is a Poisson variable with mean value m. Construct now the Poisson pro- 

cess on [0, 1] × (Am}: if N~  < m, we take the first/Y,~ variables in {Wm(m-i)/2+j : 

~(J); if N m > m, we take all variables in 1 < j _< m} to be the variables ~10,~ 

{~-~(m-W2+j : 1 _< j _< m} and introduce Nm - m supplementary variables. 

In the following theorem, by the Poisson process we mean this special Poisson 

process, which is closely related to the Dvoretzky covering. 

Furthermore, we assume that gn _< 6 for some small 0 < 5 < 1/2. The proof 

of the following theorem will also be postponed until §8. 

THEOREM 4: Suppose ~n <- 5 for some 5 < 1/2 and f k(t)O-a)2dt < oc. Then 
P~a][&l ] and Q~a][a,1] are almost surely equivalent. 

Proof  of Theorem 1 (c): In the proof of Theorem 1 (a), we see that  F~ is a Borel 

support of Q~ for a = / 3 / a .  So, dim Q~ < dim FZ. Then by Theorem I (b), we 

have 

dimQ a < dimF~ < 1 - [/31og(/3/a) - (~ - a)]. 

Therefore, we have only to show that 

(5.1) d imQ a > 1 - [ /3  l og ( /3 / a ) -  ( /~-  a)]. 

We are now going to prove (5.1) by showing that Qa is equivalent to p,a and 

that  

(5.2). dim p,a _> 1 - [/3 log(/3/a) - (/3 - a)]. 

Thus we will finish our proof. 

We first remark that the Poisson multiplicative chaos ppa is equivalent to its 

tails R'~ (it is the same for pa  and its tails R~). In fact, if P'a is defined by 

weights Pj  (we adopt the same notation as in IF1], a theorem in which it will be 

applied) then R~ may be defined by the weights P~P with 
' 2 

P j ' = I  ( l ~ j ~ n ) ,  P j ' = e j  ( j > n ) .  

Thus a simple application of the criterion in IF1] (Theorem 2.1) allows us to get 

the equivalence. The same argmnent shows that  the multiplicative chaos Qta is 
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also equivalent to its tails. Actually there is equivalence between the restrictions 
on any smaller interval of p,a and its tails (and of Qa and its tails). 

By this remark, in order to compare pm and Q,a (are they equivalent or not?), 

we have only to compare their tails, one tail of each. However, by Theorem 4, 

for any 0 < 5 < 1/2, some tails of P'~ and Qm restriction on [5,1] are equivalent. 

Therefore p,a 115,1] is equivalent to Q,a 115,1] (Vh). Since almost surely, P'~({0}) = 0 
and Q'~({0}) = 0, it follows that P'a and Q'" are equivalent on [0,1]. Recall that 

Q,a and Q~ are equivalent (Proposition 3). Thus Qa and p,a are equivalent. 

The inequality (5.2) is true if dim P'a is replaced by dim Pa (Theorem 3). 

Actually the very inequality (5.2) may be proved in the same way as Theorem 3. 

It suffices to note that  

~ - ' 
n '  fj ~ log n. 

j = l  

So, Proposition 1 and Proposition 2 remain true if fn is replaced by f~n" | 

6. Var ia t ion  of  Ne~(t), P r o o f  of  P r o p o s i t i o n  1 

The following lemma will be useful. 

LEMMA 1: Let X be a Poisson variable with mean value m. For numbers m -  
and m + such that 1 <_ m -  < m < m + < oc, we have 

rn + 
P ( X  > m +) <_ e x p ( - m + m + - m + l o g - - ~ - ) ,  

) < oxp(_ 

Proof." By the Markov inequality, 

P ( X  >_ m +) <_ e-~m+E(e~X) = exp(-m+A + (e ~ - 1)m) 

holds for all A > 0. Now minimize over A (the minimizing point is log(m+/m)) .  

In the same way, we can prove the second inequality by using the fact that for 

all A > 0, 

P ( X  <_ m - )  <_ e)'E(e-~'x ). | 

The following corollary is an immediate consequence. 
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LEMMA 2: Let ½ < 6 < 1 and 0 < ~l < 1. There is a positive constant M > 0 

such that for any Poisson variable X with mean value m > M we have 

P ( X  < m - m 6) <_ e x p ( - ( 1  - r ] ) m 2 5 - 1 ) ,  

P ( X  > m + m a) <_ e x p ( - ( 1  - r/)m26-*). 

Proof of Proposition 1: It is clear tha t  for any e > 0 we have 

]N~(t) - N~(s)[ <_ N~(DtAD,) .  

We cover the interval [0, 1] by [~n 1] + 1 intervals of length g,~, which we denote 

by {Jk} (1 _< k _< [en 1] + 1). Then  

sup Ne~(DtADs) <_ sup sup Ng~(DtAD,) .  
t,sE(O,1);[t-sI<t~ k tCJk;it-sig£,~ 

If Is - t[ _< ~ ,  we have 

where 

sup Ne~(DtAD~) <_ Ne=(Dk) 
tEak ;it--si<g,~ 

Dk = U D t A D , .  
tEJk,it--si(_~n 

Notice tha t  Dk is a union of two strips (not disjoint); one is vertical and the 

other  is oblique with slope - 1  but  bo th  are of width 3~n. Hence 

ue~ (Dk) = ~ A ¢:2 5e~ (Da) _< 2- (3gn) 1 = 6gnn = O(1). 
j = l  j = l  

Apply Lemma 1 to m + = v l°g~ with v > 0 sufficiently large. For ~ ) O, we log log n 
have 

P (  sup Ne~(DtAD,)  >_ m +) < _ ~ P ( N e , ( D k )  >_ m +) 
t,sE(O,1);]t-sl(_e~ k 

_<O(e~lexp(-(1  - ~)m + logm+))  

--~O ( n ( i _ X ) u r _ l )  • 

Take r and ~ such tha t  (1 - ~)2r > 2. Then  apply the Borel-Cantelli  lemma. 
| 
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7. Tai l  m e a s u r e  Ran, P r o o f  o f  P r o p o s i t i o n  2 

The kernel associated to the truncated measure tt~ is denoted by k~. The corre- 

sponding function ~o will be denoted by ~oe 

For p > 2 and p points t l , . . . ,  tp o n  ] ~  denote 

P 

O~( t , , . . . ,  tp) = E l - I  Pt(t j ) .  
j = l  

For any finite interval I ,  we have 

E(pa(I))P = ~II" " ~II~2~(tl . . . .  ,tp)dtl ""tp. 

So, in order to estimate pa(I) ,  we are led to estimate O~. 

LEMMA 3: Suppose tl >_ t2 >_ . . .  >_ tp-1 ~ tp. Then 

p--2 [,p--i--1 .~ a i ( 1 - - a )  2 

(I)e(~ 1 . . . . .  tp) ~-- 1-I ~ H ke(tff{i}-i- t j)) . 
i = 0  " j = l  

Proo~ F o r l < j _ < p a n d l < k < j ,  let 

Dj,k = {(x,y) : tj+l <_ x < t j , - x  + tj-(k-1) <_ y < - x  + t j -k}  

P D (with convention tp+l = --OO and to = +oo). This is a partition of [.Jj=l tj and 

points in Dj,k are repeated k times. Then we have 

P P J 

E Nc(Dq) = E E kN~(Dj,k). 
j = l  j = l  k = l  

Since Ne (Dj,k)'S are independent Poisson variables, we have 

,] ~Tt~'~P=l Ne(Dtj) -~ exp ve(Dj,k)(a k - 1 . 
L j = I  k = l  

Also we have 

P 

H exp[(a - 1)u~(Dq)] = exp (a - 1) E k~(Dj,k)  • 
j = l  j = l  k = l  

By combining these, we get the expression 

Oe(t l , . . . ,  tp) = exp[ E E ak~(Dj,k 
L j = l  k = l  
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where ak = (a k - 1) - k(a  - 1). Notice  t h a t  a l  = 0. 

Now r e m a r k  t ha t  

v~(Dj,k) = v ~ ( D q  n Dth_(k_l) ) - ~e(Dq+~ n Dtj_(k_l) ) 

- u~(Dtj N Dry_k) + L,~(Dt~+, A D q _ k ) .  

A simple ca lcula t ion  gives v~(Dt f'l Ds)  = ¢p(t - s). So we have 

. ¢ (Dj ,k )  = ~ ( t j - t j - ( k - 1 ) ) - p ~ ( t j + l - t j - ( k - 1 ) ) - ~ ( t j - - t j - k ) + ~ ( t j + l - - t j - k ) .  

(wi th  the  convent ion t ha t  p ( ~ )  = 0, so t ha t  for p e ( D j , j )  the  th i rd  and  four th  

t e rms  are zero; for .~(Dp,p),  even the second t e rm  is zero; for .~(Dp,k)  with  

1 _< k < p, the  second and  four th  t e rms  are zero). 

We are r eady  to  prove the expression of eP(tl . . . .  , tp) by induct ion  on p. The  

case p = 2 was known [FK1]. Suppose  the  expression is t rue  for p. Notice t ha t  
! 

the  pa r t i t i on  {Dj , k}  depends  on p. To dis t inguish,  we use {Dj , k}  to denote  the  

cor responding  pa r t i t i on  for p + 1. We r e m a r k  t ha t  D~, k = Dj,k for 1 < j < p. 

So, if we let  

F~(tl  . . . . .  tp) = log 4h( t l  . . . .  , tp), 

we have 

p + l  j p 

j=p k = l  k : l  

W h e n  an ex t r a  poin t  tp+l is added,  Dp,k changes as follows: 

' (1 < k < p ) .  Dp,k = DB, k U D p + l , k +  1 _ _ 

There  is aga in  a new por t ion  Dp+l ,  1, bu t  it  doesn ' t  con t r ibu te  to  F~(tl  . . . .  , t p + l )  

because  of a l  = 0. Note  t ha t  we have 

al~'~(D~,l) + a2.~(Dp+L2) - al~'~(Dp,1) = a2[F~(tp+l - tp) - Fe(tp+l - tp-1)]  

and,  for 2 < k < p, we have 

I ! ak~'~(Dp,k) + ak+l . e (Dp+l , k+l )  -- akv~(Dp,k) 

= (ak+l  -- ak)[F~(tp+l - t p - ( k -1 ) )  - F~(tp+l - tp-k)] .  

Adding  these p equal i t ies  gives 

F~(tl  . . . .  , tp, tp+l) - F¢(t l  . . . .  , tp) 
p + l  

= a2F~(tp+l - tp) + E ( a k  - 2ak-1  + ak-2)F~( tp+l  - tp- (k_~)) .  
k = 3  
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Notice tha t  

a2 = (1 -- a) 2, 

It follows tha t  
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a k - - 2 a k - l + a k - 2 = a k - 2 ( 1 - a )  2 ( 3 < k ~ p + l ) .  

O ~ ( t l , . . . ,  tp+x) ]~[ ak-1 (1_a)2 
• ~(t l ,  . : ~  = . .  k~(tp÷l - t p - ( k - i ) )  

k = l  

Thus the induction is finished. | 

Suppose 0 < a < 1. Let  

1 - a p - 1  1 
q ~ =  1 - a  a r_ l  ( l < r _ < p - 1 ) .  

We have v 'P -1  _-1 z_~=l (/~ = 1. Let I = [c, d]. By the Hblder inequality, we get tha t  

E ( P  a (I)) p is bounded by 

f . . .  f O~(tl . . . . .  tp)dtl . . .dtp p! 

c<tp <... <_t2 <tl <d 

1 ~--P! ~ "--" U ke(tjTr --tj)(l-a)(1-aP-l)dt"" .dtp 
r = l  c < t p  t2<Q<d 2 1 

<__P' / ' " j  P ~ k e ( t j + l - t j ) l - a d t l . . . d t p .  

c<tp<...<_t2<tl <_d j=l 

We have used the facts tha t  k~(t) _> 1 and k~(tj+~ - tj) < k~(tj+l - tj) because 

k~(t) is symmetr ic  and decreasing on (0, co). Thus we obtain 

LEMMA 4: Suppose 0 < a < 1. For any interval I = [c, d] and any integer p > 1, 
we have 

p--1 

~--P] / ' ' ' /  U ke(tJ+l-tj)l-adtl""dtp" E(pa  (I))  p 

c<_tp <_...<_t2 <_tl <_d j=l 

LEMMA 5: Supposegn = 7In with0  < 7 < 1. Forany~ >_ 0 a n d a n y 0  < s < gn, 

we have 

fo (s - ~ ) ~ e x p  ~ ( e j  - ,~ )÷e~ ___ C B ( 1  - % 1 + ~ ) e ~ ' - ~ ÷ ~  
j = n  
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where B(., .) is the Beta function and C is a constant independent ofT,/3 and n. 

Proof'. In t roduce  the change of variable u = vs. The  integral  to be  bounded  

becomes 

s 1+3 (1 - v)Zexp E ( g j  - sv)+dv. 
JO j=n 

For fixed v, define re(v) as the integer for which re(v) < 7/sv <_ re(v) + 1. Then  
g the sum ~ j = , (  j - sv)+ is bounded  by 

j=n sv(n - 1) 

for n >_ 2, whence the integral  in quest ion is bounded  by 

f l  (1 - 2sl+3-'~g~ n v) /3v- ' ) ' dv .  
do 

re(v) , re(v) 7 gn 
E fJ < 7 log ~ < 7 log < 7 log --sv + log 2 

oo T h a t  proves the inequali ty for n k 2. Notice tha t  exp~-'~j=l(f j - u)+ ~ u - ' r .  

A direct calculat ion shows tha t  the inequali ty also holds for n = 1 if C > 2 is 

chosen sufficiently large. II 

Proof of Proposition 2: Recall t ha t  the kernel associated to {gj}j>n is 

oo 
k i l l ( t )  = e x p  - I t l ) +  

j=n+l  

Then  we have k(n)(t) 1-a = k(n)((1 - a)t) where ~(n) is the kernel associated to 

{(1 - a)gj}j>n. Let I = [c,d] with III = g~+l. By  L e m m a  4 and  the Fatou 

lemma,  we get tha t  E(R~ (I)) p is bounded  by 

P' f " ' /  ~ [ ¢ ( n ) ( ( 1 - a ) ( t j + t - t j ) ) d t l ' " d t p  
c<-tt <...<-tp <_d j= l  

_ p! p--1 

(1 - -  a)P f "" f I I  fc(n)(tj+l - tj)dtl " "dtp" 
c(1--a)<-tt <...<to <(1-a)d j = l  

The  last integral is equal  to 

f "" f H k(n)(sj+l - sj)dSl. ' .dsp 
O<sl<S2<.--<sp<(1--a)fn+l j = l  
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---- / . . . /  k (n )  ( u 2 )  . . . k (n )  ( u p ) d U l  . . . d u p  

ul >o,...,up>_O;ul +. . .+up <_~,~+l ~ 
: L ~n+lf~n+l-ulJO k(~'~) (u2) fJOl ~ n + l  -- (U l  -l-U2 ) " ' "  

. . . .L [n+ , - (u ,+ -"+up-2 )  ~(n)(~tp_ 1 ) 

[e'~+' ~(n) (up)dupdup_l . . du2dul 
-}-..,-}-Up_ 1 ) 

X 
JO 

where [n+l  = (1 - a)fn+l = (1 - a)llI. We have made changes of variables. 

Denote 

7 = (1 - a)c~. 

By Lemma 5, the last integral is bounded by 

6 ( 1  - a) 'rB(1 - 7 ,1) l lUr({n+l  - (?-/1 -{-.-.-{- ?~p-1)) 1-q' 

where C is the constant  in Lemma 5. Substi tute this into the integral of the next 

to last integral. Then,  using once more the preceding lemma, the last double 

integral is bounded by 

C2( 1 - a)2"YB( 1 - 7, 1)B(1 - 7, 1 + (1 - - (u, + . . .  + U p _ l ) ) m - %  

Inductively we get tha t  the initial integral is bounded by 

p--1 
C p - I ( 1  - a)PIIlP I I  B(1 - 7 ,1  + (j - 1)(1 - 7)). 

j= l  

By the formula B(p, q) = F(p)F(q)/F(p + q) where I" is the G a m m a  function, we 

have 
p--1 i~(1 __7)p_ 1 
I I  B(1 - 7, 1 + (j - 1)(1 - 7)) = r (1  + (p - 1)(1 - 7))" 
j = l  

Therefore, there is some constant  C (not the same as tha t  of Lemma 5) such tha t  

p!(cmIDv E(R  (I))P <_ 
r(1 + (1 - 7)(p - 1 ) )  

It  can be deduced tha t  there are constants A > 0 and B > 0 such tha t  for any 

> 0 we have 
NeaR: (I) < Aexp(B(~lli)l/(1-,~)). 
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It follows that  the inequality 

Ee~R~(r) < Aexp(B(~n+l)l/(1-,y)) 

holds for any interval I such that III ~ ~,+1 (we deduce it from the preceding 

one using the monotonicity of the measure R~). Now divide [0, 1] into intervals 

J .  := { J l , . - . ,  Jk(n)} where 

Jm -- [c~(m-1)/(n + l ) , am/ (n  + l)] ( l ~ m < k ( n ) ) ,  

Jk(~) = [c~(k(n) - 1)/(n + 1), 1]. 

Notice that  a(k(n) - 1) < n + 1 _< ak(n). Then for arbitrary r > 0, for any 

J E Jn,  we apply the above inequality with ~ -1 = ~n+l to get 

P(R~(J) >_ r~n÷ 1 1Og~n~_l) 
< A e x p ( B ( ~ n + l )  1/(1-~) r ~ e n + l  log - '  ( 1 )  - ~n+ l )  = 0 . 

Hence 

P (max  Ra(J) > ren+l  log~fn~_l) < E P(R~n(J) > rg~+~ log e~_l) 
j ~ j , ~  - _ _ 

JEJ~ 

since k(n) < 1 + (n + 1)/a.  Take r > 2. We have, from the Borel-Cantelli lemma, 

that 
na(J) 

C(w) := sup max < c~ 
~ JCJ~ ~+1 log e~_~l 

with probability equal to one. Now it suffices to observe that any interval of 

length g~ can be covered by at most three intervals in fin. | 

8.  E q u i v a l e n c e  o f  Q" a n d  p a  

Proof of Proposition 3: By a criterion in IF1] (Theorem 2.1 (a)), it suffices to 

show that 

H E (1 + ( a -  1)~,)(1 + ( a -  1)~)  > 0 
n= l  

where ,(' is the characteristic function of the interval (0, ~ ) .  The distribution of 

X = Xn(t  - Wn) + :'(~(t - wn) does not depend on t. We have actually 

P( .Y  = 0) ~--- ] - ~n, p ( ~ r  ~- 1) = ~n - ~tn, P ( Z  = 2) : ~t n. 
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Thus, we have 
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] ]~V~a  X = e x p [ - - ~  n --~ V ~ ( e n  --  e~) --[- aetn -4- O(e2n)]. 

On the other hand, 

a - 1 o ( e b ] .  V/(1 + (a - 1)en)(1 + (a - 1)ftn) = exp [ - - - ~ ( f n  +~n) + 

Then the general term in the above infinite product equals 

Since ~(~n  - e~n) < oo and ~ f2 n < c~, the infinite product is positive. 

Isr. J. Math. 

Proof of Theorem 4: Since ~ _< 5, the multiplicative chaos pm restricted on 

[(f, 1] involves only the random points with abscissa in [0, 1]. Let l(0,~m)(t) be the 

characteristic function of the interval (0, Am), which is periodically extended on 

R with period 1 so that it can be considered as a function on T. Let 

m 

Sin(t) = E l(°,~m) (t - ~m(m-1)/2+j), 
j = l  

and 
Nrn 

Afro(t) : N(Dt A (R × {Am})) : E l(°,~m) (t - rlm'J) 
j = l  

where Nm is a Poisson variable with mean value m, rlm,j = 02rn(m_l)/24- j for 

1 < j < m and ?~m,j for j > m are also uniformly distributed. All variables Nm 
and ~/mj are independent. By the same criterion we used for proving Proposition 

3, it suffices to show that 

i aSm(t)+Xm(t) 
H E ( 1 +  (a -  1))~m)me (a-1)m;~m 

m = l  
> 0 .  

First notice that  

(1 + (a - 1)Am) m _~ exp((a - 1)roAm). 
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Then  we are  ted to  e s t ima te  E :=  Ev/aS=(t)+Arm(0. 

~g~ r~ rn t i n 
E = e  - m  ~ _ . E a  ~ Zj=~ :(o,~m)( --~m:m-://~+j)+: ~ j=~ ::O,~m)(t--~m,~) 

n : 0  

m~ ~ "  ) + ½ ~ j ~ , + : l ( o , ~ > ( t - ~ ( m _ , / ~ + ~ )  = e  - m  --~-.T EaZ~=: :(o.~m)(t-~,~ 

n = 0  

oo "~nl~q, Sm(t )+½ E~=m+: l(O&m)(t--rlm,J) 
+ e - ~  E n! - -  

n = m  + l 

where 

=:e -m -~. Am,n q- ~ .  Bm,n 
'- n----O n=m-.t.-1 

Am,n = (1 + (a - 1)Am)n(1 + ( x / ~ -  1)Am) m-n,  

Bm,n = (1 + (a - 1)Am)m(1 + (v/-a -- 1)Am) n-m. 

Take 1/2 < e < 1. There  is a cons tan t  c:  > 0 such t ha t  for m - m ~ < n < m, 

(1 + ( v r a -  1)Am) m-n >_ e -c''xmm~, 

and for m < n < m + m ' ,  

1f + ( - 1);,m ) n-m ( >_ e-c, mm" 

So b o t h  Am,n (when m -  m ~ < n < m) and Bm,n (when m < n < m + m ~) are 

bounded  from below by 

(1 + (a - 1)A,~) ~ .  e - ~ ' ' m ' .  

I t  follows t h a t  

m+m~ (m(l + (a- l)Am)) n 
E ~ e  -c:'xmrn~ • e - r n  E n!  

n = m - m  e 

=e-C:)'mm~e(a-1)mXm[1 - P ( Y  < rn - rn ~ or Y > m + me)] 

where Y denotes  a Poisson var iable  wi th  mean  value m(1 + (a - 1)Am) ~ m. By 

L e m m a  2, the  p robab i l i t y  P ( . )  in the  last  expression is bounded  by  e -c2m2~-: for 

some c2 > 0. Thus,  the  infinite p roduc t  is bounde d  from below by 

exp - Cl Atom ~ (1 - -  e -c2m~-1) > O. | 
m = l  a m = l  
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9. Final  r emarks  

1. The method tha t  we have used to prove Proposi t ion 2, i.e., est imating the 

Laplace t ransform of R~ a (I) and then using it to bound probabilities, does not 

work when a > 1, as the Laplace t ransform of Ra~(I) is infinite for all ~ > 0 in 

this case. Actual ly we have E(Ra~ (I)) p = oc for large p. In fact, by Lemma 3, for 

any interval I = [c, d] we have 

c<_tp<..,<Q <d 

where T = aP-2(1 -- a) 2. In t roducing changes of variables, we have 

/.. ./ 
Ul+.-.+Up<lI] 

/o  III 
r r . 

vl +...+vp- l <_llI-vp 

p! f i l l  
- k~(vp)'( lI  I - vp)p-ldvp. 

( p -  1)! J0 

(For simplicity, we do not  mark  uj > 0 and vj >_ 0 in the domains of integration).  

It  follows tha t  if croP-2(1 - a) 2 > 1 (recall tha t  fn = c~/n), the last integral tends 

to infinity as e --+ 0. Therefore the mart ingale P2(I)  doesn ' t  converge in L p 
for large p. It  is equivalent to saying tha t  E(pa( I ) )  p ---- OO o r  ] E ( R a ( I ) )  p = (x3. 

However, as we have seen, when 0 < a < 1, the same martingale converges in L p 

for all p. Tha t  is an essential difference between the case 0 < a < 1 and the case 

a > l .  

2. In IF3], there is a discussion of L p convergence in the case a = 1, where the 

mart ingale is suitably defined. 

3. If  we had a bet ter  est imation than  tha t  in Lemma 4, the restriction 

max(c~ - 1, 0) < ~ would be relaxed. But  notice tha t  there is nothing bet ter  

to do when c~ < 1 for max(c~ - 1, 0) = 0. 

4. Instead of P a E l - [ j= l  Pa(t j ) ,  we consider E [ I P = I  Qn(t3). Finding a formula 

similar to tha t  in Lemma 3 seems more difficult. This is why we call for Poisson 

multiplicative chaos. The cost is the equivalence theorem (Theorem 4). 

A C K N O W L E D G E M E N T :  I would like to thank Professor J. P. Kahane  for many  

enlightening communicat ions and Professor K. S. Lau for his warm hospitali ty 

during my visit to IMS, The Chinese University of Hong Kong. I am grateful to 



Vol. 131, 2002 INTERVALS COVERING A POINT IN DVORETZKY COVERING 183 

the anonymous referee. His comments were very pertinent and his suggestions 

very useful, from which the last version (especially simplifications of the proofs 

of Lemma 1, Lemma 5 and Proposition 2) has benefited. 

R e f e r e n c e s  

[D] A. Dvoretzky, On covering a circle by randomly placed arcs, Proceedings of 
the National Academy of Sciences of the United States of America 42 (1956), 
199-203. 

[E] R.S. Ellis, Entropy, Large Deviation and Statistical Mechanics, Springer-Verlag, 
New York, 1985. 

[F1] A.H.  Fan, Equivalence et orthogonalitd des mesures aldatoires engendrdes par 

martingales positives homogbnes, Studia Mathematica 98 (1991), 249 266. 

IF2] A .H.  Fan, Sur les dimensions de mesures, Studia Mathematica 111 (1994), 
1 17. 

[F3] A.H. Fan, Sur la convergence des martingales lides au recouvrement, Journal of 
Applied Probability 32 (1995), 668 678. 

[FK1] A. H. Fan and J. P. Kahane, Raret~ des intervalles recouvrant un point dans un 

recouvrement al~atoire, Annales de l'Institut Henri Poincar~ 29 (1993), 453-466. 

[FK2] A.H. Fan and J. P. Kahane, How many intervals cover a point in random dyadic 

covering?, Portugaliae Mathematica 58 (2001), 59 75. 

[K1] J .P .  Kahane, Some Random Series of  Functions, Cambridge University Press, 
1985. 

[K2] J .P .  Kahane, Positive martingales and random measures, Chinese Annals of 
Mathematics 8B1 (1987), 1-12. 

[K3] J . P .  Kahane, Intervalles aldatoires et ddcomposition des mesures, Comptes 
Rendus de l'Acad~mie des Sciences, Paris 304 (1987), 551-554. 

[K4] J . P .  Kahane, Produits de poids aldatoires inddpendants et applications, in 
Fractal Geometry and Analysis (J. B~lair and S. Duduc, eds.), Kluwer Aca- 
demic Publications, Dordrecht, 1991, pp. 277-324. 

[K5] J .P .  Kahane, Random coverings and multiplicative processes, in I~actal Geom- 

etry and Stochastics, II (Greifswel/Koserow, 1998), Progress in Probability 46, 
Birkhaiiser, Basel, 2000, pp. 125 146. 

[Man] B. B. Mandelbrot, Renewal sets and random cutouts, Zeitschrift ffir 
Wahrscheinlichkeitstheorie und Verwandte Gebiete 22 (1972), 145 157. 

[Mat] P. Mattila, Geometry of  Sets and Measures in Euclidean Spaces, I~'actals and 

Rectifiability, Cambridge University Press, 1995. 



A. H. FAN Isr. J. Math. 184 

IS1] L. Shepp, Covering the circle with random arc, Israel Journal of Mathematics 

11 (1972), 328-345. 

[$2] L. Shepp, Covering the line with random intervals, Zeitschrift fiir Wahrschein- 

lichkeitstheorie und Verwandte Gebiete 23 (1972), 163 170. 


